Q-PHASE detail

  • No image artifacts such as halo effect (as opposed to techniques based on Zernike phase contrast illumination)
  • Enables very precise detection of cell boundaries
  • Strong suppression of coherent noise (speckles) & parasitic interferences (as opposed to laser-based approaches)
  • Label-free – no staining is needed, simple sample preparation, observation of live cells in their native environment, no photobleaching problems
  • Low phototoxicity – low light power density (107× lower than fluorescence microscopy) allows long-term observations (for days)
  • Coherence-gating effect – Q-PHASE special feature enabling to observe samples even in scattering media (phospholipid emulsions, extracellular matrices, etc.)
  • Multimodality – fully integrated fluorescence module, simulated DIC and brightfield which enables automatic multimodal imaging of the sample
  • High-quality QPI – unique Q-PHASE’s optical setup allows using incoherent illumination which provides extraordinary imaging quality without any compromises
  • Lateral resolution of conventional microscopes (up to 2× better when compared to common laser-based approaches or pinhole spatial filtering based techniques)
  • Fast acquisition – the use of off-axis holographic approach makes Q-PHASE a single-shot instrument, thus enabling imaging of very fast cell dynamics
  • Full motorization – focusing, sample stage, objective exchange, fluorescence filters
  • Automated multidimensional acquisition – time-lapse, channel, position, Z-stack
  • Simple image segmentation and processing – comparable to fluorescence data processing
  • Quantitative – phase values can be recalculated e.g. to cell dry-mass density (pg/μm2) or direct topography with nanometer sensitivity (usually non-biological samples with homogeneous refractive index distribution)
  • High phase detection sensitivity – enables to detect even the smallest changes in axial direction, very sensitive detection of morphology or position changes